телефон: +7(812) 941-0-945
skype:
Чиню мозги и мебель
Новости сайта:
Олег Матвеев-Гендриксон, семейный психолог и реставратор в СПб

5.1.3 Факторные планы

5.1.3 Факторные планы

Факторные эксперименты применяются тогда, когда необходимо проверить сложные гипотезы о взаимосвязях между переменными. Общий вид по­добной гипотезы: «Если А1, А2,..., Аn, то В». Такие гипотезы называются комплексными, комбинированными и др. При этом между независимыми переменными могут быть различные отношения: конъюнкции, дизъюнкции, линейной независимости, аддитивные или мультипликативные и др. Факторные эксперименты являются част­ным случаем многомерного исследования, в ходе проведения которого пытаются ус­тановить отношения между несколькими независимыми и несколькими зависимы­ми переменными. В факторном эксперименте проверяются одновременно, как пра­вило, два типа гипотез:

1) гипотезы о раздельном влиянии каждой из независимых переменных;

2) гипотезы о взаимодействии переменных, а именно — как присутствие одной из независимых переменных влияет на эффект воздействия на другой.

Факторный эксперимент строится по факторному плану. Факторное планирова­ние эксперимента заключается в том, чтобы все уровни независимых переменных сочетались друг с другом. Число экспериментальных групп равно числу сочетаний уровней всех независимых переменных.

Сегодня факторные планы наиболее распространены в психологии, поскольку простые зависимости между двумя переменными в ней практически не встречаются.

Существует множество вариантов факторных планов, но на практике применя­ются далеко не все. Чаще всего используются факторные планы для двух незави­симых переменных и двух уровней типа 2х2. Для составления плана применяет­ся принцип балансировки. План 2х2 используется для выявления эффекта воздей­ствия двух независимых переменных на одну зависимую. Экспериментатор манипу­лирует возможными сочетаниями переменных и уровней. Данные приведены в простейшей таблице (табл. 5.6).

Реже используются четыре независимые рандомизированные группы. Для обра­ботки результатов применяется дисперсионный анализ по Фишеру.

Так же редко используются другие версии факторного плана, а именно: 3х2 или 3х3. План 3х2 применяется в тех случаях, когда нужно установить вид зависимо­сти одной зависимой переменной от одной независимой, а одна из независимых переменных представлена дихотомическим параметром. Пример такого плана — эксперимент по выявлению воздействия внешнего наблюдения на успех решения интеллектуальных задач. Первая независимая переменная варьируется просто: есть наблюдатель, нет наблюдателя. Вторая независимая переменная — уровни трудно­сти задачи. В этом случае мы получаем план 3х2 (табл. 5.7).

Вариант плана 3х3 применяется в том случае, если обе независимые перемен­ные имеют несколько уровней и есть возможность выявить виды связи зависимой переменной от независимых. Этот план позволяет выявлять влияние подкрепления на успешность выполнения задании разной трудности (табл. 5.8).

Таблица 5.6

2-я переменная

1-я переменная

Есть

Нет

Есть

1

2

Нет

3

4

Таблица 5.7

1-я переменная

2-я переменная

Легкая

Средняя

Трудная

Есть наблюдатель

1

2

3

Нет наблюдателя

4

5

6

Таблица 5.8

Уровень сложности задачи

Интенсивность стимуляции

Низкая

Средняя

Высокая

Низкий

1

2

3

Средний

4

5

6

Высокий

7

8

9

В общем случае план для двух независимых переменных выглядит как N х М. Применимость таких планов ограничивается только необходимостью набора боль­шого числа рандомизированных групп. Объем экспериментальной работы чрезмер­но возрастает с добавлением каждого уровня любой независимой переменной.

Планы, используемые для исследования влияния более двух независимых пере­менных, применяются редко. Для трех переменных они имеют общий вид L х М х N.

Чаще всего применяются планы 2х2х2: «три независимые переменные — два уровня». Очевидно, добавление каждой новой переменной увеличивает число групп. Общее их число 2, где п — число переменных в случае двух уровней интенсивности и К — в случае К-уровневой интенсивности (считаем, что число уровней одинаково для всех независимых переменных). Примером этого плана может быть развитие предыдущего. В случае, когда нас интересует успешность выполнения эксперимен­тальной серии заданий, зависящая не только от общей стимуляции, которая произ­водится в форме наказания — удара током, но и от соотношения поощрения и нака­зания, мы применяем план 3х3х3.

Таблица 5.9

L1

L2

L3

М1

A1

В2

С3

М2

В2

С3

А1

м3

С3

А1

В2

Упрощением полного плана с тремя независимыми переменными вида L х М х N является планирование по методу «латинского квадрата». «Латинский квадрат» применяют тогда, когда нужно исследовать одновременное влияние трех перемен­ных, имеющих два уровня или более. Принцип «латинского квадрата» состоит в том, что два уровня разных переменных встречаются в экспериментальном плане только один раз. Тем самым процедура значительно упрощается, не говоря о том, что экспе­риментатор избавляется от необходимости работать с огромными выборками.

Предположим, что у нас есть три независимые переменные, с тремя уровнями каждая:

1. L1,L2,L3

2. М1,М2,М3

3. А, В, С

План по методу «латинского квадрата» представлен в табл. 5.9.

Такой же прием используется для контроля внешних переменных (контрбалан­сировка). Нетрудно заметить, что уровни третьей переменной N (А, В, С,) встреча­ются в каждой строке и в каждой колонке по одному разу. Комбинируя результаты по строкам, столбцам и уровням, можно выявить влияние каждой из независимых переменных на зависимую, а также степень попарного взаимодействия переменных.

«Латинский квадрат» позволяет значительно сократить число групп. В частно­сти, план 2х2х2 превращается в простую таблицу (табл. 5.10).

Применение латинских букв в клеточках для обозначения уровней 3-й перемен­ной (А — есть, В — нет) традиционно, поэтому метод назван «латинский квадрат».

Более сложный план по методу «греко-латинского квадрата» применяется очень редко. С его помощью можно исследовать влияние на зависимую переменную четырех независимых. Суть его в следующем: к каждой латинской группе плана с тремя переменными присоединяется греческая буква, обозначающая уровни четвер­той переменной.

Рассмотрим пример. У нас четыре переменные, каждая из которых имеет три уровня интенсивности. План по методу «греко-латинского квадрата» примет такой вид (табл. 5.11).

Для обработки данных применяется метод дисперсионного анализа по Фишеру. Методы «латинского» и «греко-латинского» квадрата пришли в психологию из агро­биологии, но большого распространения не получили. Исключением являются не­которые эксперименты в психофизике и психологии восприятия.

Главная проблема, которую удается решить в факторном эксперименте и невоз­можно решить, применяя несколько обычных экспериментов с одной независимой переменной, — определение взаимодействия двух переменных.

Таблица 5.10

2-я переменная

1-я переменная

Есть

Нет

Есть

А

В

Нет

В

А

Таблица 5.11

L1

L2

L3

М1

Аa

Вb

Сg

М2

Вb

Сg

Аa

М3

Сg

Аa

Вb

Рассмотрим возможные результаты простейшего факторного эксперимента 2х2 с позиций взаимодействий переменных. Для этого нам надо представить результаты опытов на графике, где по оси абсцисс отложены значения первой независимой пе­ременной, а по оси ординат — значения зависимой переменной. Каждая из двух пря­мых, соединяющих значения зависимой переменной при разных значениях первой независимой переменной (А), характеризует один из уровней второй независимой переменной (В). Применим для простоты результаты не экспериментального, а кор­реляционного исследования. Условимся, что мы исследовали зависимость статуса ребенка в группе от состояния его здоровья и уровня интеллекта. Рассмотрим вари­анты возможных отношений между переменными.

Первый вариант: прямые параллельны — взаимодействия переменных нет (рис. 5.1).

Больные дети имеют более низкий статус, чем здоровые, независимо от уровня интеллекта. Интеллектуалы имеют всегда более высокий статус (независимо от здо­ровья).

Второй вариант: физическое здоровье при наличии высокого уровня интеллекта увели­чивает шанс получить более высокий статус в группе(рис 5.2).

В этом случае получен эффект расходяще­гося взаимодействия двух независимых пере­менных. Вторая переменная усиливает влия­ние первой на зависимую переменную.

Третий вариант: сходящееся взаимо­действие — физическое здоровье уменьшает шанс интеллектуала приобрести более высо­кий статус в группе. Переменная «здоровье» уменьшает влияние переменной «интеллект» на зависимую переменную. Есть и другие случаи этого варианта взаимодействия:

переменные взаимодействуют так, что увеличение значения первой приводит к уменьшению влияния второй с изменением знака зависимости (рис. 5.3).

У больных детей, обладающих высоким уровнем интеллекта, меньше шанс полу­чить высокий статус, чем у больных детей с низким интеллектом, а у здоровых — связь интеллекта и статуса позитивная.

Теоретически возможно представить, что больные дети будут иметь больший шанс получить высокий статус при высоком уровне интеллекта, чем их здоровые низкоинтеллектуальные сверстники.

Последний, четвертый, возможный вариант наблюдаемых в исследованиях отно­шений между независимыми переменными: случай, когда между ними существует пересекающееся взаимодействие, представленное на последнем графике (рис. 5.4).

Итак, возможны следующие взаимодействия переменных: нулевое; расходя­щееся (с различными знаками зависимости); пересекающееся.

Оценка величины взаимодействия проводится с помощью дисперсионного ана­лиза, а t-критерий Стьюдента используется для оценки значимости различий груп­повых `X. 

Во всех рассмотренных вариантах планирования эксперимента применяется спо­соб балансировки: различные группы испытуемых ставятся в разные эксперимен­тальные условия. Процедура уравнивания состава групп позволяет производить сравнение результатов.

Однако во многих случаях требуется планировать эксперимент так, чтобы все его участники получили все варианты воздей­ствия независимых переменных. Тогда на по­мощь приходит техника контрбалансировки.

Планы, в которых воплощается стратегия «все испытуемые — все воздействия», Мак-Колл [McCall W. А., 1923] называет ротацион­ными экспериментами, а Кэмпбелл — «сба­лансированными планами». Чтобы не было путаницы между понятиями «балансировка» и «контрбалансировка», будем использовать термин «ротационный план».

Ротационные планы строятся по методу «латинского квадрата», но, в отличие от рассмотренного выше примера, по строкам обозначены группы испытуемых, а не уровни переменной, по столбцам — уровни воздействия первой независимой пере­менной (или переменных), в клеточках таблицы — уровни воздействия второй не­зависимой переменной.

Пример экспериментального плана для 3 групп (А, B, С) и 2 независимых пере­менных (X,Y) с 3 уровнями интенсивности (1-й, 2-й, 3-й) приводим ниже. Нетрудно заметить, что этот план можно переписать и так, чтобы в клеточках сто­яли уровни переменной Y (табл. 5.12).

Кэмпбелл включает этот план в число квазиэкспериментальных на основании того, что неизвестно, контролируется ли с его помощью внешняя валидность. Дей­ствительно, вряд ли в реальной жизни испытуемый может получить серию таких воздействий,как в эксперименте.

Что касается взаимодействия состава групп с другими внешними переменными, источниками артефактов, то рандомизация групп, согласно утверждению Кэмпбелла, должна минимизировать влияние этого фактора.

Суммы по столбцам в ротационном плане свидетельствуют о различиях в уровне эффекта при разных значениях одной независимой переменной (X или Y), а суммы по строкам должны характеризовать различия между группами. Если группы рандомизированы удачно, то межгрупповых различий быть не должно. Если же состав группы является дополнительной переменной, возникает возможность ее проконт­ролировать. Схема контрбалансировки не позволяет избежать эффекта тренировки, хотя данные многочисленных экспериментов с применением «латинского квад­рата» не позволяют делать такой вывод.

Таблица 5.12

Группа

Уровни 1-й переменной

X1

X2

X3

А

Y1

Y2

Y3

В

Y2

Y3

Y1

С

Y3

Y1

Y2

Подводя итог рассмотрению различных вариантов экспериментальных планов, предлагаем их классификацию. Экспериментальные планы различаются по таким основаниям:

1. Число независимых переменных: одна или больше. В зависимости от их числа применяется либо простой, либо факторный план.

2. Число уровней независимых переменных: при 2 уровнях речь идет об установле­нии качественной связи, при 3 и более — количественной связи.

3. Кто получает воздействие. Если применяется схема «каждой группе — своя ком­бинация», то речь идет о межгрупповом плане. Если же применяется схема «все группы — все воздействия», то речь идет о ротационном плане. Готтсданкер на­зывает его кросс-индивидуальным сравнением.

Схема планирования эксперимента может быть гомогенной или гетерогенной (в зависимости от того, равно или не равно число независимых переменных числу уровней их изменения).

Оглавление

A PHP Error was encountered

Severity: Warning

Message: Trying to access array offset on value of type bool

Filename: type_foreach/info-bottom-page-bookpages.php

Line Number: 38

A PHP Error was encountered

Severity: 8192

Message: preg_replace(): Passing null to parameter #3 ($subject) of type array|string is deprecated

Filename: type_foreach/info-bottom-page-bookpages.php

Line Number: 38

Запись в СПб по тел: или по скайпу: My status

Хочешь узнавать больше? Получай новые статьи в час публикации